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This paper considers a #uid-loaded sandwich panel, made up of layers of relatively rigid
skin material surrounding a layer of less dense core material, with an unsteady point driver
in steady mean #ow. For a simple plate Brazier-Smith and Scott, and Crighton and Oswell
predicted a number of unusual phenomena, including absolute instability, a neutral mode
with its group velocity pointing towards the driver, and negative energy waves. The possible
occurrence of these phenomena for realistic parameter values is considered. It is shown that
absolute instability is unlikely to be found at normal speeds, but in contrast the anomalous
propagation mode is present, although over a limited frequency range. It is shown that the
negative energy waves could also well occur in practice. Study of both the full dispersion
relation and asymptotic analysis demonstrate that at very low frequencies it is the ratio of
core to skin sti!nesses and the #ow speed which control the dynamics, but at higher
frequencies shear coupling and rotational e!ects become important as well. Consideration of
the relative magnitudes of the energy #uxes leads to the unexpected conclusion that for
predominantly shear waves more energy is carried in the #uid than is carried in the plate.
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1. INTRODUCTION

There is considerable interest in the use of sandwich panels in naval engineering. Such
panels usually consist of layers of relatively rigid skin material surrounding layers of less
dense core material, and are much lighter than conventional homogeneous plates. A range
of theories describing the dynamical behaviour of such sandwich panels have been
developed*see, for instance, references, [1}4]. However, their interaction with the
surrounding #uid, which in the underwater context is potentially very signi"cant, seems to
have received rather little attention to date, and the aim here is to develop the sort of theory
previously applied to simple structures (see, for instance, reference [5]) to sandwich panels.
In a companion paper, the problem of #uid loading of a sandwich panel in still #uid [6] is
described, but here the case in which the #uid has a non-zero mean #ow speed is considered.
The aim of the analysis is to determine the causal behaviour of such a system driven by
a point excitation, by using the Briggs}Bers [7, 8] technique for "nding the long-time limit
of the solution of initial-value problems. Previous work for a simple plate in uniform mean
#ow by Brazier-Smith and Scott [9] and by Crighton and Oswell [10] has predicted
0022-460X/01/190597#21 $35.00/0 ( 2001 Academic Press
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a number of unusual phenomena which do not arise for zero mean -ow, including absolute
instability at su$ciently high normalized #ow speed ;, a neutral mode with its group
velocity pointing towards the driver, and negative energy waves.

The most important di!erence between a sandwich panel and a simple plate is that as well
as the tranverse de#ection, in-plane shear motions are also permitted. The approach here is
to adopt the model developed by Skvortsov [11, 12], in which high order e!ects likely to
arise when disturbance wave-lengths become comparable to the thicknesses of the sandwich
layers are ignored, thereby reducing the motion of the panel to two degrees of freedom,
namely a transverse, #exural de#ection w and a shear angle h. The resulting system of
equations leads to a dispersion relation which is essentially a seventh order polynomial in
the spatial wavenumber (compared to "fth order for the sample plate with mean #ow). Four
additional dimensionless material parameters are also introduced, measuring the ratios of
the core and skin sti!nesses, the strength of coupling between longitudinal shear and
transverse #exural motions, and rotational terms in the core and skin.

The model and typical material parameter values are described in section 2. In section 3,
it is shown that although absolute instability is theoretically possible over a range of
parameter values, it is unlikely to be found in practical situations at normal speeds. In
contrast, it is shown in section 4 that the anomalous propagation mode is present for
realistic parameter values, but only over a small range of very low driver frequencies.
However, in section 5 it is shown that the negative energy waves are likely to be an
important practical feature of the dynamics of a sandwich panel, with the e!ect that the
point driver can even act to remove energy from the system. The energy #uxes in the #uid
and the plate are also considered; for predominantly transverse waves the energy #ux in the
plate is larger, but for predominantly shear waves it is, surprisingly, the #uid energy #ux
which dominates.

The analysis here is completed via study of both the full dispersion relation and
asymptotic analysis in the realistic limit of small ;. This sheds light on a number of issues,
such as: the modal structure of the problem, including the existence of two families
of modes, one corresponding to predominantly #exural motion and a second to
predominantly shear motion; the strength of coupling between the driver and the #exural
and shear modes; and the nature of the energy #uxes associated with each of the modes. It
turns out that at low frequencies it is the ratio of core to skin sti!nesses and;which control
the dynamics, but at higher frequencies shear coupling and rotational e!ects become
important as well.

2. PROBLEM FORMULATION AND SOLUTION

In this section, the system is described in detail, the governing equations are presented
and their formal solution derived. The method for determining the long-time limiting
behaviour of this solution, which will be the principal concern in this paper, will also be
described, and the relevant values of certain important material and #ow parameters
determined.

2.1. GOVERNING EQUATIONS

Consider the situation shown in Figure 1, in which a sandwich panel lies along the x-axis,
with a vacuum in y(0 and with #uid in y'0. The #uid has a mean #ow speed ;

s
in the

positive x direction, and the panel is forced to vibrate by an unsteady point driver located at



Figure 1. The sandwich panel with mean #ow, driven by a point force q
w

and point couple qh at x"0.
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the origin, which generates a force q
w
(t) d(x) and a turning moment qh (t)d (x). It is supposed

that the driver is turned on at time t"0, so that q
w,h (t)"0 for t(0.

The model used to describe the sandwich panel has been developed by Skvortsov [11,
12], and is equivalent to an extension of Mindlin thick plate theory. The sandwich panel
consists of two relatively rigid skin panels and a relatively soft core panel, of thickness h

a,b
,

density o
a,b

, and Young's moduli E
a,b

in the longitudinal direction and G
a,b

in the transverse
direction, respectively, and for simplicity, the ratios
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are introduced. The motion of the sandwich panel can be described in terms of transverse,
#exural de#ection w (x, t) into and out of the #uid, and angle h(x, t) corresponding to
longitudinal shear deformation, and it is shown in reference [6] that the equations of
motion are

D
1

L4w

Lx4
!C A

Lh
Lx

#

L2w

Lx2B#m
L2w

Lt2
!I

1

L4w

Lx2 Lt2
"q

w
(t) d (x)!p (x, 0, t), (2)

!D
2

L2h
Lx2

#C Ah#
Lw

LxB#I
2

L2h
Lt2

"qh(t) d (x). (3)

Here,
m"o

a
h
a

[2#d/e] (4)
is the panel mass per unit area, and

D
1
"

E
a
h3
a

12(1!l2) C2#
c
e3D , D

2
"

E
a
h3
a

2(1!l2) A1#
1

eB
2
, (5, 6)

are the e!ective sti!nesses to #exural and shear motion, with l the Poisson ratio. In this
paper, the Poisson ratios in each material are assumed equal, which is the case for the
materials used in the study by Nilsson [4]. However, this restriction is in no way necessary
for this theory, and alternative expressions for the various coe$cients listed here, with the
Poisson ratios unequal and indeed with arbitrarily many plies, can easily be derived.
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Further
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are the e!ective moments of inertia of the skin and the core; and
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is a term which describes the coupling between the #exural and shear motions. The term
!p (x, 0, t) on the right-hand side of equation (2) corresponds to the loading on the
structure from the hydrodynamic pressure in the #uid. This pressure is given by the
linearized Bernoulli equation

p"!o
0

((L//Lt)#;
s
(L//Lx)), (10)

where o
0
is the undisturbed density of the #uid. For the present purposes it is quite su$cient

to assume that the #uid is incompressible, so that the velocity potential / (x, y, t) satis"es
Laplace's equation +2/"0. The motions of the #uid and plate are also coupled together by
the normal-velocity boundary condition

L//Ly"(Lw/Lt)#;
s
(Lw/Lx) on y"0. (11)

In order to be able to compare the results with the Crighton and Oswell work [10], the
problem is now non-dimensionalized by using their length scale m/o

0
and their time scale

m5@2/D1@2
1
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, so that, for instance, the non-dimensional transverse displacement becomes

wJ ,wo
0
/m. In what follows the tildes are dropped, so that from now on all quantities will be

non-dimensional unless explicitly stated otherwise. The problem described in the previous
paragraph can be solved by using Fourier transforms in x and t, with for instance

wN (k, u)"P
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and by transforming equations (2) and (3), completing some algebra, and then inverting the
expressions for wN and hM , the solution is found in the form
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Here dimensionless quantities relating to material properties are
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the non-dimensional #ow speed is ;";
s
m3@2/(D1@2

1
o
0
); and the dispersion function,

D(k,u), is de"ned by
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where DkD"$k for Re(k) positive and negative respectively. Finally, note that the spatial
inversion contour in equation (13) has been chosen to be the real k-axis, while the temporal
inversion contour C is located in the upper half of the u plane above all the singularities of
the integrands of equation (13). Since the point forces are turned on at t"0, it follows that
qN
w,h(u) are analytic in the upper half of the u plane. In order to "x C it is therefore necessary

to consider just the poles arising from the roots of the full dispersion relation

D (k, u)"0, (16)

corresponding to modes in which (to a greater or lesser extent) both shear and #exural
motions are excited. In equation (13b) there is apparently another set of poles arising from
the roots of

Cu2!A!Dk2"0, (17)

but closer inspection of equation (13b), together with equation (15), reveals that the residue
of the integrand at these points is in fact zero, so that no modes are actually generated. In
fact, the dispersion relation (17) corresponds to pure shearing motion in which w (x, t)"0,
but from equations (2) and (3) it is clear that this sort of motion could only occur when the
coupling between the shearing and #exural motion vanishes (i.e., C"0). However, it will be
seen that certain roots of the full dispersion relation (16) are approximately equal to the
roots of equation (17), corresponding to modes in which shear motion dominates.

Once C has been chosen to lie above all singularities in the u plane, it follows that for
t(0 the temporal contour is closed in the upper half-plane to yield w"h"0, thereby
guaranteeing that the solution is causal.

2.2. LONG-TIME LIMIT

In principle, the inversion integrals (13) can be computed numerically for arbitrary values
of t, but considerable physical insight and simpli"cation can be obtained in the steady state
limit tPR. The crucial aim here must be to determine the long-time limit of the causal
solution, and a well-known procedure for doing this has been developed by Briggs [7] and
Bers [8], and it was precisely their technique which was applied to #uid}structure
interactions by Brazier-Smith and Scott [9], Crighton and Oswell [10], Peake [13] and
Lingwood and Peake [14], amongst others.

The idea is to deform the temporal contour C downwards towards the real u-axis, while
at the same time deforming the spatial inversion contour o! the real k-axis so as to avoid
any pole crossings and thereby retain an analytical solution. A number of possibilities can
occur.

1. Two poles from opposite halves of the k plane could pinch together as C is lowered,
say at k"k

0
for u"u

0
. Once this happens, downward deformation of C must be halted,

and it can then be shown (see reference [9]) that the long-time behaviour of the system is
dominated by the pinching mode, with response proportional to exp(!iu

0
t#ik

0
x). Since

Im(u
0
)'0 (otherwise the pinch would not be found before C had reached the real u-axis),

it follows that the response grows exponentially in t for all x, which is known as absolute
instability. Note that necessary and su$cient conditions for absolute instability are the
existence of a saddle point (i.e., point where Lu/Lk"0), which is formed by the coalescence
of modes from opposite halves of the k plane.

2. If no pinching occurs, then C can be deformed all the way onto the real axis. It might
then be the case that a mode originating in the upper half of the k plane moves below the
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k-axis, causing the spatial contour to be deformed downwards. Such a mode would then
have a spatial wavenumber with a negative imaginary part, but would be located in x'0
(because it lies above the inversion contour), and therefore corresponds to a convective
instability.

3. Another possibility is that spatial poles come to rest on the real k-axis once C has
reached the real u-axis, and therefore correspond to neutral modes. The question of the
spatial location of these neutral modes is answered by considering from which half-plane
they originated; for instance, a mode which originates from the upper/lower half-plane and
moves monotonically onto the real k-axis causes the spatial inversion contour to be
indented below/above the pole, and therefore, to a mode located downstream/upstream of
the driver. Such modes would have group velocity pointing away from the driver, which
conforms with the usual and expected radiation condition of out-going group velocity
formulated by Rayleigh [15] and Lighthill [16]. Alternatively, it may happen that a mode
originates in the upper half of the k plane, and then moves below the real k-axis as C is
lowered, before returning to the real k-axis once Im(u) has reduced to zero. Such a mode
would be located downstream of the driver, but would have its group velocity pointing
towards the driver, in violation of the Rayleigh}Lighthill radiation condition.

As already pointed out, the poles in the k plane correspond to the roots of D (k, u)"0,
and it will be seen that they exhibit all the types of behaviour enumerated above over
signi"cant portions of parameter space.

2.3. MATERIAL PARAMETER VALUES

It is clear that the large number of parameters in this problem leads to some complexity,
particularly since the dimensionless quantities A, B, C, D and ; are non-linear functions of
the thickness, density and transverse and longitudinal Young's modulus ratios e, d, c and g.
In order to "x ideas and to indicate the range of parameter values which might be relevant
in practice, the sandwich panel described by Nilsson [4] is considered. It is therefore
supposed that the skin and core materials are isotropic, with Young's moduli
E
a
"1)67]1010 N/m2 and E

b
"0)013]1010N/m2, respectively, leading to c"g"0)0078;

that the material densities are o
a
"1760 kg/m3 and o

b
"130 kg/m3, leading to d"0)074;

that the Poisson ratio is l"0)3 in both materials; and "nally that the core thickness is
50 mm. The precise materials considered by Nilsson are not given in reference [4], but
a typical sandwich panel might be composed of a soft PVC core and sti! carbon "bre/epoxy
skin. However, the skin thickness, and hence e, will be allowed to vary (Nilsson has e"0)1),
and this should thereby provide a consistent picture of the way the dimensionless quantities
vary for given skin and core materials. In Figure 2, A,B,C,D/100 are plotted against e, and
all these quantities seem to take O (1) values, which vary quite substantially, as e increases
from zero. As well as these material properties, the #uid density must be speci"ed, which is
taken to be that of water, so that o

0
"1000 kg/m3. The dimensionless #ow-speed parameter

; is simply proportional to the #ow speed;
s
, but has non-linear dependence on e through

the plate mass m. In Figure 3, ; is plotted against e for a dimensional #ow speed
;
s
"10 m/s and with c"0)0078 as above, and again it is seen that ; varies signi"cantly as

e is increased. Also plotted is the behaviour of ; with the smaller value of c"0)00078,
corresponding to an even less rigid core material, in order to demonstrate that the value of
; is very sensitive to the material properties. It is noted, however, that ; is always small
here (indeed to obtain O(1) values of ; one will typically require unrealistically large #ow
speeds), and this will allow asymptotic analysis to be completed in the limit of small ; in
due course. Finally, in this section, it is worth emphasizing the physical interpretation of the



Figure 2. Variation of dimensionless material parameters A, B, C and D, as the thickness ratio e is varied:**,
A; } } } } , B; -------, C; ......., D/100.

Figure 3. Variation of dimensionless speed parameter; as the thickness ratio e is varied, with c"0)0074, as in
reference [4] and also c"0)00074.
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material parameters. It will be seen that the most signi"cant parameter will be D, the ratio of
the e!ective sti!nesses to longitudinal and transverse motions, and this is large over the
parameter range thanks to the relatively small value of e and c. The parameter A will also be
seen to be signi"cant, and this corresponds (through its proportionality to C ) to the strength
of coupling between the transverse and longitudinal motion. The terms B and C will prove
to be less signi"cant in subsequent analysis, but correspond to the rotational terms in the
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two equations of motion (note that B approaches a "nite value, about 4)93 in this case, as
eP0).

3. ABSOLUTE INSTABILITY

In this section, the occurrence of absolute instability for the dispersion relation (16) is
described. It turns out that two k modes originating from opposite half-planes can
coalescence as u is reduced, corresponding to absolute instability, provided that the
coalescence occurs when Im(u)'0. In order to "nd the boundary of parameter space over
which this can occur, the asymptotic limit of small ; is considered "rst, as was done by
Crighton and Oswell [10]. In reference [10] it was shown that in the simple plate problem,
absolute instability can occur when k"O (;2@3) and u"O(;5@3), and upon adopting these
scalings it is found that there is a preferred limit A"O(;4@3) and D"O (;~2@3), in which
case the full dispersion relation (16) reduces to

!k4#u2#
(u!k;)2

DkD
!Ak2#

A2

D
"0, (18)

where terms of size up to O(;10@3) have been retained. Note that this asymptotic dispersion
relation depends only on A, D and;, and the remaining parameters B and C appear only at
higher order. By following [10], the absolute instability boundary for this new dispersion
relation can now be determined. The absolute instability occurs when two roots coalesce,
and the boundary of absolute instability is when a third mode also coalesces with these two
modes, leading to a triple root of equation (18) in the k plane. Double di!erentiation of
equation (18) leads to the cubic

k3#
3A

10
k!
;2

10
"0 (19)

and it is easy to show that this equation always has a single real, positive root, which can
easily be determined numerically for a given value of A. The corresponding value of u can
then be found from equation (18), and an implicit relationship between;, A and D found by
substituting these values for k and u into the "rst derivative of equation (18). This therefore
yields an asymptotic absolute instability boundary, which for instance can be plotted in
A}; space for di!erent values of D, and this is done in Figure 4. Here, the #ow is absolutely
unstable above each curve. For A"0, corresponding to the case in which the core material
has zero sti!ness, all the curves go through the point ;+0)074 (the absolute instability
boundary found in reference [10]), but as A is increased the value of the #ow speed required
for absolute instability rises quite rapidly. The boundary is relatively insensitive to D, but
tends to move to higher values of ; as D is increased.

The absolute instability boundary for the full dispersion relation (16) can be calculated
numerically, with the results described above providing a useful "rst guess. This involves
determining the location of a given unstable pinch, and then, for instance, keeping ;, B,
C and D "xed while A is increased until the saddle frequency becomes real. This can then be
repeated for other values of ; to build up the absolute instability boundary in the A};
plane, and then repeated for di!erent B, C and D if required. In Figure 5, the absolute
instability boundary is plotted as A is varied, with B,C,D taking the values given in
reference [4]. Changing the values of B and C has very little e!ect on this curve, while
changing D has the same e!ect as seen in Figure 4. The boundary has been continued up to
;"1, which for the panel described in reference [4] corresponds to the unrealistically large
dimensional #ow speed of 365)5 m/s! Interestingly, for ; larger than about 1, it no longer



Figure 4. Absolute instability boundary for small ; in the A}; plane, for D"60, 70, 80, from equation (18).
The #ow is absolutely unstable above and to the left of each curve.

Figure 5. Absolute instability boundary (***) for e"0)1 in the A}; plane, from the full dispersion relation
(16). Other material parameters as in reference [4], leading to B"0)094, C"0)951, D"74)2. The small ; result
(........) has also been included for comparison.
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proved possible to "nd a value of A for which the unstable saddle becomes neutral,
suggesting that the #ow might then be absolutely unstable for all A. However, since ;"1
appears to be a #ow speed which could never be attained in practice, this possibility need
not be considered further. Indeed, it seems from the results presented here that absolute
instability would be unlikely to occur in practice for typical sandwich panels.
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4. CONVECTIVE INSTABILITY AND NEUTRAL MODES

If the #ow is not absolutely unstable, then the temporal inversion contour in
equation (13) can be deformed down onto the real u-axis, and this means that conventional
spatial or temporal stability analysis can be performed. In Figure 6, the temporal roots of
equation (16) for real k are plotted, with material parameter values as in reference [4] and
with speed ;"0)025 (corresponding to a dimensional #ow speed of 9)14 m/s). Only the
modes with k'0 are considered, and results for k(0 follow by re#ecting Figure 6 in the
origin. Four solution branches are evident. Two of the branches seen in Figure 6(a) have

u"O(1), and originate from u"$JA/C at k"0. These modes are all neutral, and it
turns out are approximately, but not exactly, equal to the roots of equation (17), which
themselves are modes associated with pure shearing of the plate. For this reason, these
solution branches will be referred to as the longitudinal branches. The second pair of
branches are found at much smaller values of u, and possess the more complicated structure
shown magni"ed in Figure 6(b) and 6(c). For k(k

b
there is a pair of complex modes, one of

which corresponds to a convective instability, at k"k
b

the branches coalesce, and for
k'k

b
there is a pair of neutral modes. This structure is in fact very similar to that found in

reference [10] for a conventional plate, so that these modes can be associated with the
transverse motion of the panel (i.e., wO0), and will be referred to as the transverse branches.
In this case, the coupling between the shear and #exural motions will be seen to be
signi"cant.
Figure 6. Roots of the dispersion relation (16) for real k ((b) and (c) are successively magni"ed views of (a)), with
material parameter values A"0)938, B"0)094, C"0)951, D"74)200 and e"0)1, and with #ow speed
parameter;"0)025. The solid lines correspond to neutral modes, and the dotted line in (b) and (c) to the real part
of a convectively unstable mode.
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4.1. ANALYSIS FOR SMALL ;

In order to understand the model structure of the present problem, it is helpful to apply
"rst asymptotic analysis in the limit of small ; (note from Figure 3 that this is an entirely
realistic limit). The aim is to describe all of the k}u plane over which mean-#ow e!ects are
important, and following Crighton and Oswell [10] k"O(;) is considered "rst. The
transverse branches will have u"O(1), and writing k";K, u"X#;X

1
#2, with

quantities denoted by a capital letter being O(1), and then substituting this into the full
dispersion relation (16) and equating powers of ;, it is found that

u"$G
A1@2

C1@2
#

;2DK2

2A1@2C1@2
#

;3K3A1@2C1@2

2
#O(;4)H . (20)

The "rst two terms in this expansion are identical to the equivalent expansion of u for
purely transverse motion from equation (17), and it can therefore be seen that for these
modes the coupling of the #exural motion to the shear motion is very weak, and has an
e!ect of size only O (;3) on the modal frequency. In the same way, the longitudinal branches
can be determined for k"O(;) by writing u";2X

0
#;5@2X

1
#;3X

2
#2, and again

substituting this into equation (16) and equating powers of ; the two branches

u";2K$;5@2 [K5 (D#1)!K3]1@2
(21)

!;3K2$
;7@2 [2K4!K6 (D#1)]

2 [K5 (D#1)!K3]1@2
#O(;4)

are found. Note that only the material parameter D features in these terms, indicating that it
is the relative sti!nesses of the skin and core which is crucial at this order. Moreover, if
D"0, corresponding to zero core sti!ness, then this expansion matches exactly with that
obtained for a simple thin plate in reference [10]. The branch point k

b
can be obtained by

noting, via the Binomial Theorem, that the sum of the terms with alternating signs in
equation (21) is equal to

[K5 (D#1)!K3#; (2K4!K6 (D#1))]1@2 (22)

to the asymptotic order considered, and setting this quantity equal to zero yields

k
b
"

;

JD#1
!

;2

2(D#1)
#O(;3),

(23)

u
b
"

;2

JD#1
!

3;3

2(D#1)
#O(;4).

For the parameter values used in Figure 6, this gives the asymptotic estimates
k
b
"0)0028788 u

b
"7)176]10~5, which compares very well with the exact values of

0)0028797 and 7)180]10~5 respectively. The branch point corresponds to an exceedingly
low-frequency, long-wave mode; for the parameter values given in reference [4], the
corresponding wavelength is 52)6 m and the frequency is 0)17 Hz. In contrast to this, the

longitudinal branch arises at a much higher frequency; for instance, u"JA/C is
equivalent to a frequency of about 2)4 kHz. Of course, the present theory will break down
for wavelengths which are comparable to, or shorter than, the thickness of the whole panel.
The sandwich thickness has been taken to be 0)06 m, so that a mode with wavelength
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shorter than this thickness would have dimensionless wavenumber larger than about 2)25.
It therefore follows that all the modes shown in Figure 6 have wavelengths which are
signi"cantly longer than the transverse dimensions of the plies. Of course, it might
alternatively be argued that a frequency of 2)4 kHz leads to a short acoustic wave. In the
current paper, incompressible #ow has been assumed, so that the acoustic wavelength is
in"nite and the theory is self-consistent. However, taking instead a sound speed of 1500 m/s
in water, this frequency leads to an acoustic wavelength of 0)625 m, which is again
considerably thicker than the panel.

The zero group velocity point k"k
s
on the lower transverse branch is also described by

the scaling u"O(;2). The leading-order expression for k
s

could be determined by
di!erentiating equation (21) with respect to K, but in order to distinguish k

s
from the branch

point k
b
a higher order approximation is required, and to obtain this it proves easier to "rst

determine k as a function of u, thereby e!ectively inverting expansion (21). After some
algebra this turns out to be

k";X$;3@2 [(D#1)X5!X3]1@2#;2
5(D#1)X4!X2

2

$;5@2 5
2

X3 (1#D) [(D#1)X5!X3]1@2 (24)

$;5@2
[5 (D#1)X4!X2]2

8 [(D#1)X5!X3]1@2
#O(;3)

and the second and "fth terms taken together yield the turning point in the form

k
s
"

;

JD#1
#O(;5@2), u

s
"

;2

JD#1
!

2;3

D#1
#O(;7@2). (25)

For the parameter values used in Figure 6, this gives the asymptotic estimate for the point
(k

s
, u

s
) as (0)002877, 7)1657]10~5), which again compares very well with the exact values

of (0)00288395, 7)1680]10~5). With D"0 equation (25) again agrees exactly with the
corresponding result from reference [10].

The turning point k"k
p

in Figure 6(b) is not described by the scaling used in the
previous paragraph, and to describe this the alternative scaling k";2@3K is used by
following reference [10]. Proceeding in exactly the same way, the longitudinal modal
frequencies are given by

u"$GA
A

CB
1@2

#

;2@3

2 A
A

CB
1@2#O(;4@3)

H (26)

and are therefore independent of wavenumber to this asymptotic order (explaining why the
corresponding curves in Figure 6 are relatively #at for k less than about 0)01). Interestingly,
only the "rst term in equation (26) now agrees with the corresponding expansion for the
completely uncoupled transverse modes from equation (17), so that the e!ect of the coupling
to the #exural motion now arises earlier, at O(;2@3), than when k"O(;). The modal
frequencies on the transverse branches are now given by

u";5@3(K$K5@2 (1#D)1@2)!;7@3K2G;7@3
K7@2 (1#D)1@2

2
#O(;3). (27)
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By di!erentiating this result with respect to K and considering the negative root, the
leading-order terms in the expansion for the turning point k

p
on the transverse branch are

found in the form

k
p
";2@3 A

4

25 (1#D)B
1@3

#O (;4@3),

(28)

u
p
"

3;5@3

5 A
4

25(1#D)B
1@3

#O(;7@3).

Again, the agreement between the asymptotic turning point (0)010997, 1)6495]10~4) and
the exact result (0)011002, 1)6687]10~4) is very satisfactory*higher order terms could be
calculated, as in the previous paragraphs, but will not be needed in subsequent analysis and
can therefore be omitted. In dimensional terms, again using parameters from reference [4],
this point corresponds to a wavelength of 13)8 m and a frequency of 0)4 Hz.

The dispersion curves for small k has now been completely described. For k"O(1), it is
easy to see that mean-#ow e!ects do not enter the solution to leading order, and that one is
simply left with the zero-#ow problem described in reference [6].

4.2. SPATIAL LOCATION OF MODES

The only unstable modes present in Figure 6 are located on the transverse branches for
u(u

s
. In fact, there is a pair of complex conjugate roots here, which have originated in the

upper half of the k plane for large Im(u), and as described in section 2.2, point 2, the spatial
inversion contour is deformed below the mode in the lower half-plane, which therefore
corresponds to a convectively growing mode downstream of the driver. The conjugate
mode corresponds to an evanescent wave downstream. The system is therefore convectively
unstable when driven at u(u

s
; note that the temporal growth rate approaches zero as

u approaches zero.
All the other modes shown in Figure 6 are neutral. The transverse mode with k

b
(k(k

s
,

u
s
(u(u

b
possesses exactly the property described in section 2, point 3, whereby it

originates in the upper half of the k plane for large Im(u), moves below the real k-axis as
Im(u) is reduced, and then turns round and moves onto the real axis as Im(u)P0*see
Figure 7. This means that the mode is located downstream of the driver, because it
originated in the upper half of the k plane, but possesses a group velocity directed towards
the driver, because it moves onto the real k-axis from below. This violates the usual
radiation condition of out-going group velocity at in"nity, as formulated by Rayleigh [15]
and Lighthill [16], and is exactly the behaviour found by Crighton and Oswell [10] in their
simple-plate problem. Of course, the Rayleigh}Lighthill radiation condition was developed
for situations in which the driver is the only source of energy, whereas in the present
problem energy can be extracted from the mean #ow as well*this is described fully in
reference [10]. However, this &&anomalous'' behaviour demonstrates that in general the
causal solution to initial value problems must be determined using the sort of global
consideration of the dispersion function described here, and not merely via local behaviour
based on the group velocity. All the other neutral modes in Figure 6, including the rest
of the transverse branches and both longitudinal branches, behave in a conventional way,
with group velocity directed away from the driver. From equation (23) and (25) it can be
seen that the anomalous frequency range has length ;3/2 (D#1), which is of course very



Figure 7. Movement (in direction of arrow) of the mode k"0)0028803, u"7)17234]10~5 as Im(u) is
increased from zero. Parameter values as in Figure 6.
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small, and therefore over most frequencies the Rayleigh}Lighthill criterion is entirely
applicable. Since D is moderately large in the present calculations, the anomalous frequency
range found here is even smaller in length than that found by Crighton and Oswell [10],
who had D"0.

4.3. AMPLITUDE OF RESPONSE

The asymptotic results derived in this section will now be used to investigate the
amplitude of neutral waves excited by the driver. If it is supposed that the driver acts with
a single frequency, u, and the #ow is not absolutely unstable, then the plate de#ection far
from the driver can be obtained simply from equation (13) as a sum of contributions from
the corresponding k poles at the given u. It is also clear that in general the amplitude of
a given mode will contain a component which is proportional to the force q

w
and

a component which is proportional to the couple qh, and the aim here is to ascertain the
relative amplitudes of these two terms.

First, consider neutral modes corresponding to the transverse branches of the full
dispersion relation (16), and for de"niteness consider the preferred limit u"O(;2). In this
range, the dispersion relation (16) has two roots with k"O(;), described by equation (21),
and it is easy to show that for both these roots the corresponding plane-wave surface
de#ections are

w(x, t)"O(;~1) qN
w
#O(1)qN h ,

(29)
h (x, t)"O (1)qN

w
#O(;)qN h ,

from which it can be concluded that the de#ections are here more strongly coupled to the
force than to the moment, and indeed that the #exural de#ection is larger than the shear
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de#ection. Also, equation (16) has two other roots with k"O(;2@3), for which it is easy to
show that equation (29) also applies, but with ; replaced by ;2@3. Exactly equivalent
analysis in the second preferred limit u"O (;5@3) will lead to the same conclusion, and it
can therefore be said that for modes on the transverse branches the response is dominated
by the force, and that the #exural motion is signi"cantly larger than the shear motion.

Second, consider neutral modes on the longitudinal branches of the full dispersion

relation (16). For u"JA/C#O(;2), as described by equation (20), there is a neutral
mode with k"O(;), for which it can be shown that

w(x, t)"O(;2) qN
w
#O(1)qN h ,

(30)
h (x, t)"O(1)qN

w
#O(;~2)qN h .

Hence, in this regime it is the point moment which is much more strongly coupled to the
plate de#ections, and the shear de#ection is much larger than the #exural de#ection.

Interestingly, however, if u is a little further away from JA/C, say by O(;2@3) as described
by equation (26), then the four coe$cients in equation (30) are all O(1), and the force and
moment now make contributions of equal order. It can therefore be concluded that the

plate must be driven with a frequency very close to JA/C in order for shear motion to
dominate the response. Similar results are obtained in the companion paper [6] in the
absence of mean #ow.

5. ENERGY

In this section, the energy balance in the system will be considered, with particular
reference to how the various modes described in the previous section contribute to the
energy #ow out of, and indeed into, the driver. It will still be supposed that the system is
below the absolute instability boundary described in section 3, so that if the driver oscillates
with a single real frequency u then the system will respond with the same frequency, with
the long-time limit of the causal response being given via the Briggs}Bers technique
described earlier.

5.1. WAVE ENERGY

The wave energy of a neutral mode in the system will be calculated "rst. This concept was
introduced by Benjamin [17] and Landahl [18], and formulated in the context of #uid
loading by Cairns [19], and corresponds to the work done to create the neutral wave at
t"O(1) starting from rest at t"!R. Consider a wave with #exural de#ection
w"A(t) exp(ikx!iut), and corresponding shear de#ection, where k is a root of equation
(16) for the given u, and A(t) is the wave amplitude which increases only slowly with t. Work
must be done to create the wave, and this corresponds to the working of the tranverse
surface velocity against the di!erence between the hydrodynamic pressure exerted by the
#uid on the panel and the equivalent pressure exerted by the panel on the #uid (these two
pressures are in balance only when the wave has become a normal mode.) From the
left-handside of equation (2) and from equation (10), it is easy to see that this pressure
di!erence is

D
w
(k, u#i L/Lt) A(t) exp (ikx!iut), (31)
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where the time derivative is supposed to act only on A(t), and where the new dispersion
function is

D
w
(k, u),D (k, u)/(Dk2#A!Cu2). (32)

By following Cairns, it can be shown that the work done to create the wave (the wave
energy) is

1

4 Au
LD

w
Lu B DA D2 (33)

and for convenience the wave energy per unit amplitude, E, is introduced, which is simply
obtained from equation (33) by setting A"1.

For solutions of equation (16) it follows from equation (33) that the wave can be either
a positive energy wave (E'0) or a negative energy wave (E(0), depending on the sign of
u(LD

w
/Lu). The excitation of positive energy waves leads to an increase in the total system

energy, while excitation of negative energy waves lead to a decrease in total system energy.
It is a straightforward matter to check numerically, and to verify asymptotically for small;,
that in Figure 6 the modes on the longitudinal branches are all positive energy waves, while
the modes on the lower transverse branch between k"k

b
and the point where the branch

crosses u"0 are negative energy waves (the modes on the remaining portions of the
transverse branches are positive energy waves). The behaviour of the wave energy for the
transverse branches is exactly the same as found by Crighton and Oswell [10].

Having associated a wave energy with a given neutral mode, an energy #ux per unit
amplitude in the direction away from the driver can be de"ned as

J(k, u)"$

Lu
Lk

E, (34)

where the group velocity Lu/Lk is the velocity of energy propagation, and the plus and
minus signs correspond to modes downstream and upstream of the driver respectively. The
sign of J will determine whether a mode transports energy away from the driver (J'0) or
towards the driver (J(0). From the remarks made in the previous paragraph, it is clear
that the pure shear modes all have J'0, as do the modes on the upper transverse branch.
The modes with u'0 on the lower transverse branch are all negative energy waves (E(0);
for k'k

s
they also have group velocity directed away from the driver, and therefore have

J(0; but for k
b
(k(k

s
the anomalous mode has group velocity directed towards the

driver, yielding J'0. In the next section it will be seen how all these modes balance to give
a total net energy #ux which can be either positive or negative, depending on the value of u.

5.2. WORK DONE BY DRIVER

The total rate of working by the driver is made up of the work done by the force q
w

and
the couple qh , and for a single oscillation frequency, u, the time-average rate of working, W,
is equal to

W"1
2
Re M!iuwq*

w
!iuhq*h N. (35)

Expressions for w and h for real u can easily be found from equation (13) by suppressing the
u integration and suitably deforming the spatial contour around any poles according to the
Briggs}Bers procedure. In fact, the spatial integrals possess both real and imaginary parts,
but it is only the imaginary parts, which come from the contributions arising from
deformation above or below neutral, or below convectively unstable, poles which contribute
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to the rate of working. The real parts of the k integrals, which are just Cauchy principal-value
integrals, only a!ect the near "eld of the driver. Hence, by substituting results from equation
(13) into equation (35), and after some algebra, the rate of working becomes

W"

u2

16
+

1

J(k (u),u) K qw!
ikAqh

Dk2#A!Cu2 K
2
. (36)

The terms in equation (36) arise from the poles corresponding to the roots of equation (16),
and for u'u

s
the summation runs over all the real k roots of equation (16) for the given

real u. For u(u
s
, the #ow is convectively unstable, and the summation then also involves

the corresponding unstable mode, the contribution from which must be interpreted as just
the real part of 1/J. In equation (36) the residue contributions from the poles have been
rewritten in terms of the energy #ux J(k (u), u) by using the results

(Dk2#A!Cu2)
LD

w
Lu

"

LD
Lu

"!

LD
Lk N

Lu
Lk

. (37)

Here, the "rst result follows from taking the u derivative of equation (32), and the second
result comes from the chain rule applied to the u derivative of equation (16).

The form of equation (36) is very important, and con"rms the interpretation of wave
energy given at the end of the previous subsection. The sign of the contribution from a given
mode depends only on the sign of the energy #ux J (k(u),u) of that mode, since clearly the
amplitude of the contribution is always positive de"nite. The rate of working is plotted in
Figure 8 in two di!erent cases, one in which the point source produces a force but zero
torque, and a second in which the source produces both a force and a torque of equal
dimensionless amplitude which are exactly in phase. Just two ranges of u are plotted*one

for small u and the second for u+JA/C*and outside these ranges the work simply
decreases monotonically with increasing u. For small u, the rate of working is dominated
by the contribution from the force, so that in fact the two curves are indistinguishable in
Figure 8(a). Note that rate of working is negative for all u(u

p
, indicating that the waves

with negative energy #ux are dominant. Also, the rate of working is divergent at u"u
p
. In

contrast, in Figure 8(b) the rate of working is always positive (since as noted above no
negative energy waves are present for u'u

p
). The rate of working of the point force alone,

and of the point moment, for u(JA/C are small. However, for u*JA/C the real
transverse mode makes a signi"cantly larger contribution, and indeed W becomes in"nite
at u"JA/C, since the transverse mode then has k"0, leading to a singularity in the
corresponding second term in equation (36). The enhancement of the contribution from the
point moment can easily be seen by noting that in equation (36) qN h appears multiplied by
the factor !ikA/(Dk2#A!Cu2), which essentially comes from the ratio between h
and w given in the transformed version of equation (3). When u is small, it was seen in
section 4.1 that the roots k of (16) are small, so that this amplitude ratio is also small. This
explains why qN hO0 has no appreciable e!ect in Figure 8(a). However, when u is close to
JA/C, it also follows from section 4.1 that k/(Dk2#A!Cu2) is large (for instance, when
u"J(A/C)#O(;2), this factor is O(;~2)), and hence at these frequencies the couple
makes a large contribution to the rate of working.

5.3. ENERGY BALANCE EQUATION

The question of how energy is transported away from, or towards, the driver (i.e., through
the #uid or in the panel) is now considered, and to do this it is necessary to derive an energy



Figure 8. Plots of the rate of working of the source with q
w
"1 and qh"0 (.......) and q

w
"1 and qh"1 (***),

over the two signi"cant ranges of u. Parameter values as in Figure 6.
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balance equation for the system. This proceeds by multiplying equations (2) and (3) by Lw/Lt
and Lh/Lt, respectively, adding the results together and then integrating in x between x

1
(0

and x
2
'0. The details of this calculation are very similar to those presented in section 4.1 of

reference [10], and only the result for the present system need be given here. It turns out that

d(¹
f
#¹

p
#<

p
)

dt
#F (x

2
, t)!F(x

1
, t)"q

w

Lw

Lt
#qh

Lh
Lt

. (38)

The term on the right-hand side is of course the rate of working of the driver, as stated in the
previous subsection. On the left-hand side, ¹

f
is the quadratic approximation to the
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disturbance kinetic energy in the #uid (exactly as in reference [10], see their equation (4.4)),
while ¹

p
and <

p
are the kinetic and potential energies of the panel, which in the present

problem are di!erent to those of reference [10] and become

¹
p
"

1

2 P
x
2

x
1
A
Lw

LtB
2
#C A

Lh
LtB

2
#B A

L2w

Lx LtB
2

dx,

(39)

<
p
"

1

2 P
x
2

x
1
A
L2w

Lx2B
2
#D A

Lh
LxB

2
#A Ah#

Lw

LxB
2

dx.

In equation (38) the #ux term, F (x, t), is given by

F"J
f
#J

p
#J

pf
(40)

with the three terms on the right being the energy #uxes in the #uid and in the plate, and
a coupled term respectively. These quantities are

J
f
"P

=

0

L/

Lx Ap#;
L/

LxBdy,

J
p
"

Lw

Lt

L3w

Lx3
!

L2w

Lt Lx

L2w

Lx2
!B

Lw

Lt

L3w

Lx Lt2
!D

Lh
Lt

Lh
Lx

!A Ah#
Lw

LxB
Lw

Lt
,

J
pf
";w

L/

Lt
. (41)

Consider now a single mode satisfying equation (16). The time averages (denoted by angle
brackets) of the three components of the energy #ux become

SJ
p
T"

Dw D2
2 G2uk3#Aku!Bku3#

A2uk(Cu2!A)

(Dk2#A!Cu2)2H ,

(42)

SJ
f
T"

DuD2
4k2

u(u!k;)2, SJ
pf

T"
Dw D2;

2k
u(u!k;)2.

For modes on the longitudinal branch with u close to JA/C , it is easy to show that the
plate #ux J

p
is dominated by the contribution from the transverse de#ection h: i.e., by the

"nal term in the expression for SJ
p
T. However, it also turns out that SJ

f
T is the largest of the

three #uxes; for instance, for u"JA/C#O (;2) it follows that k"O(;) and hence that
SJ

f
T"O(;~2), while SJ

p
T"O(;~1) and SJ

pf
T"O(1). This is perhaps a rather surprising

conclusion, because one might expect that for these predominantly shearing modes most of
the energy would be carried in the plate. However, it can be understood by noting that the
relatively large values of the #uid #ux has arisen from the fact that the #uid velocity
potential and pressure are proportional to (u!k;)/k, and on the longitudinal branch there
are long wavelength, but relatively high frequency, disturbances, causing this factor to
become large. In other words, these in-plane motions induce a piston-like transverse motion
of the plate, and because the #uid is assumed incompressible this leads to the build-up of
a large unsteady pressure, and hence to a large energy #ux through the #uid.
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Alternatively, for modes on the transverse branch of equation (16) with u small, it can be
shown that most of the energy is carried in the plate (e.g., for u"O(;2), k"O(;) it turns
out that SJ

p
T"O(;3), while SJ

f
T"O (;5) and SJ

pf
T"O(;9@2)). In this case, the energy

#ux in the plate is dominated by the #exural term A ((Lw/Lx) (Lu/Lt)), and as might be
expected the shear motion makes a smaller contribution.

6. CONCLUDING REMARKS

In this paper, the causal response of a sandwich panel to point excitation in the presence
of uniform mean #ow has been analyzed, and it has been seen how the mean #ow leads to
a number of unusual features. Crighton and Oswell [10] showed how a simple
homogeneous plate in mean #ow can exhibit absolute instability, anomalous propagation
waves with group velocity directed towards the driver and negative energy waves. All three
of these features turn out to be present for the sandwich panel as well. It seems that it is
highly unlikely that absolute instability will occur for a typical sandwich panel, since for the
realistic panel parameters studied here it is found that the mean #ow speed needs to be in
excess of exceedingly high values. Indeed, the threshold mean-#ow speeds for absolute
instability in typical panels are an order of magnitude greater than the value for steel in
water found by Crighton and Oswell [10]. The anomalous propagation can occur for
realistic panel parameters, but only over a very restricted frequency range. In contrast, it has
been seen that negative energy waves can certainly exist over a very wide parameter range,
and this is a signi"cant point, since the direction of energy transfer can no longer be
assumed to be from the driver to the structure. Indeed, it is known that negative energy
waves can play an important role in divergence instability and the onset of #utter in
homogeneous plates, and it is reasonable to expect that this could potentially happen for
sandwich panels as well.

Energy is transported along the sandwich structure through both the #uid and through
the panel (as happens for a homogeneous plate). The latter is made up of contributions from
both the transverse motion (again as for a homogeneous plate) and the longitudinal motion
associated with shear between the core and skin (which is of course not present for
a homogeneous plate). As might be expected, the transverse and longitudinal contributions
dominate the plate energy #ux for the transverse and longitudinal modes respectively.
Interestingly, however, it has been shown that a signi"cant amount of energy can also be
transported through the #uid when the panel undergoes shear-dominated de#ections, due
to the induced long-wavelength but relatively high-frequency transverse motion. This
feature is also absent for a homogeneous plate, and may have implications for noise
radiation from sandwich panels in #ow.
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